# MIDTERM RESEARCH REPORT

1D1-18 Joseph Zonghi



### GOALS

- Brainwave Language Prediction
  - Differentiate between imagined English and Japanese
- Real-time using Echo State Network

Neural Network on FPGA

- Preprocess the incoming Bluetooth data
- Calculate output over a given window using a neural network





# PRELIMINARY TESTING

- ESN
  - Unsatisfactory results
  - Difficult to differentiate between classes with high changing frequency (a.)
  - Difficulty finding reasonable threshold outputs (b.)
  - Many various hyperparameters tested (c.)
  - Raw data not inherently easily differentiable (d.)

# SWITCH TO WINDOW-BASED

- Following results achieved by Zhao et al. [1]
- Preprocess data by extracting features over a window
  - Mean
  - Median
  - Min
  - Max
  - Standard Deviation
  - Variance
  - Kurtosis
  - Skewness
  - Etc.

| 1 🟠 Tree<br>Last change: | Fine Tree     | Accuracy: 70.7%<br>2790/2790 features |
|--------------------------|---------------|---------------------------------------|
| 2 ☆ SVM<br>Last change:  | Linear SVM    | Accuracy: 94.3%<br>2790/2790 features |
| 3 🟠 SVM<br>Last change:  | Quadratic SVM | Accuracy: 91.0%<br>2790/2790 features |
| 4 😭 SVM<br>Last change:  | Cubic SVM     | Accuracy: 87.4%<br>2790/2790 features |

45 features x 62 channels = 2790 input features

#### PRELIMINARY NEURAL NETWORK TESTING

- NN Properties:
  - Normalizing input layer
  - Fully-connected internal layer(s)
  - Softmax activation layer(s)
  - Classification layer



#### PRELIMINARY NN TESTING



# NEXT STEPS



#### Further NN Tuning

- Increase Accuracy
- Reduce false positive rate after transfer learning

#### **FPGA** Design

- Preprocessing structure
- Neural Network structure

#### **Obtain Dataset**

- Currently: Public dataset provided by [1] for speaking vs. nonspeaking
- Desire: English / Japanese dataset



### REFERENCES

• [1] Shunan Zhao and Frank Rudzicz (2015) Classifying phonological categories in imagined and articulated speech. *In Proceedings of ICASSP 2015*, Brisbane Australia.