

Speech Feature Analysis and Discrimination in Biological Information

Shogo Honda

BCI(Brain computer Interface)

Lip reading

Eye Tracking

Speech Interface

for speech disorder (EX) ALS, tongue cancer

Nearly **40 years** of technological improvement using these specific pieces of information → Why don't we **rethink the biological signals** used?

In this study \cdots

Finding new biological information for speech interface

Speech Feature Analysis and Discrimination in Biological Information

1D01 HONDA Shogo

Speech Feature Analysis and Discrimination in Biological Information

1D01 HONDA Shogo

Objectives

STUDY 1

Agenda

1. <u>STUDY ONE</u> (Vocal folds vibration)

"Japanese Vowel Discrimination by Throat Vibration"

2. <u>STUDY TWO</u> (Pre-speech EEG)

"Unvoiced Consonant Prediction from Pre-Speech EEG Data"

3. Conclusion

4. Future Work

Related studies on vocal folds vibration

1. Electroglottograph(EGG)

- Measures the degree of contact between the vocal folds
- Able to distinguish between natural voice and back voice[1]

2. Electromyography(EMG)

- Measure muscle cell movement
- Used in studies to assess muscle condition during swallowing[2]

[2] Cagla Kantarcigil et al. "Validation of a Novel Wearable Electromyography Patch for Monitoring Submental Muscle Activity During Swallowing"

No research has focused on the use of vocal folds vibration for speech recognition.

[1] A. Mayr, "Parameters of Flow Glottogram and EGG for Vocal Registers-Modal, Falsetto and voce faringea." **Speech Feature Analysis and Discrimination in Biological Information**

1D01 HONDA Shogo

<u>Measurement</u>

Device: Multifunctional sensor TSND121

Attach to the throat

Attach to the position of the larynx where the vocal cords are located.

Measurement setup

*ALTIMA:

Dedicated software for TSND121

 Collects acceleration data and audio data

Measurement Procedure

Number of subjects: 1 Voice contents: Japanese vowels Number of repetitions: 10 times Japanese vowels

The subject listened to the tone at 100 Hz before speaking.

Measured vibration data

No clear differences/characteristics of each vowel····

Vowel Classification

Number of samples : 50 Number of class : 2 Cross validation : 5 folds cross

Vowel Classification Discrimination accuracy : 71% on average /a/ vs /i/ /a/ vs /u/ ● /a/ ● /i/ ● /a/ ● /ɯ/ E2 [H2] 85% 75% 2-class linear SVM MATLAB classification F1 F1 [Hz] Learner App /a/ vs /e/ /a/ vs /o/ ● /a/ ● /o/ ● /a/ ● /e/ Number of samples : 50 [ZH] [ZH] [ZH] E3 [H2] E4 Number of class: 2 . * • Cross validation : 5 folds cross 55% 70%

F1 [Hz]

Z

214 216 218

 F1 [Hz]

226 228

Discussion

Achievement

No speech recognition by vocal folds vibration

- Recorded 71% vowel classification accuracy
- Indicated the possibility as new biological signals

- Improvement

Low discrimination accuracy between /a/ and /e/

- ➤ Similarity of frequencies → Another feature value
- Small number of samples used for training

Discussion

Similarity of the first and second formants of vowels [3]

→ **No significant difference in frequency** [Solution]: Another feature

Discussion

Achievement

No speech recognition by vocal folds vibration

- Recorded 71% vowel classification accuracy
- Indicated the possibility as new biological signals

- Improvement

Low discrimination accuracy between /a/ and /e/

- ➤ Similarity of frequencies → Another feature value
- Small number of samples (1 subject) → More data collection

Discussion

Words are a combination of vowels and consonants

Study /'stadi/

Problem

Consonant recognition by vocal folds vibration is challenging.

<u>Next step</u> Need to find other biological signals that can <u>classify consonants</u>

Speech Feature Analysis and Discrimination in Biological Information

1D01 HONDA Shogo

Speech-related studies on EEG

Ghane et al. [4]

- Measured EEG while the subject is imaging vowels
- Classified imaged vowels by SVM
- Classification accuracy was 76.7%

[4] Ghane et al. "Learning Patterns in Imaginary Vowels for an Intelligent Brain Computer Interface (BCI) Design "

Moses et al. [5]

- Measuring invasive EEG during vocalization
- Classified the uttered words
- Classification accuracy was 47.1%

[5] Moses et al. "Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria"

Capable of capturing speech features by EEG

Word prompt

1D01 HONDA Shogo

<u>Measurement</u>

Measured	data	and	devices

Data [sampling rate]	Device/software
EEG signal [256Hz]	EPOC X (Emotiv Inc.)
Audio signal [44.1kHz]	USB microphone (Sanwa Supply Co.)
Trigger signal	PsychoPy 3

* These signals were measured simultaneously by LabRecorder

List of word prompts

Phoneme Category	Word Prompt
F	Face, Fox, Fly, Faith, Free
В	Box, Bike, Body, Boom, Born
Р	Pan, Pink, Push, Pool, Peace
М	Milk, Mix, Mind, Mood, Max
S	Sing, Soul, Sea, Six, Sweet

20

Measurement Procedure

*1 To check the quality of the EEG measurement, calibration was performed for each experiment. *2 The subjects were asked to practice pronunciation with a native speaker before the experiment.

Preprocessing

MATLAB and EEGLAB were used for preprocessing

- **Epoch**…Take pre-speech EEG (-1s~0s)

Preprocessing

MATLAB and EEGLAB were used for preprocessing

- **Epoch**…Take pre-speech EEG (-1s~0s)
- **High-Pass filter** (2Hz)····Remove low-frequency noise
 - In Ghane et al.[4], they took Band-Pass filter at 2~40Hz
 - Gamma waves (35Hz~) were observed in Moses et al.[5]

[4] Ghane et al. "Learning Patterns in Imaginary Vowels for an Intelligent Brain Computer Interface (BCI) Design "[5] Moses et al. "Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria"

Preprocessing

MATLAB and EEGLAB were used for preprocessing

- **Epoch**…Take pre-speech EEG (-1s~0s)
- **High-Pass filter** (2Hz)…Remove low-frequency noise
 - In Ghane et al.[4], they took Band-Pass filter at 2~40Hz
 - Gamma waves (35Hz~) were observed in Moses et al.[5]
- Min-max scaling(-1~+1)... Keep the noise and brain wave differences between each subject within a certain range
- **Baseline** (-500ms~0ms)… EEG voltage offset adjustment

[4] Ghane et al. "Learning Patterns in Imaginary Vowels for an Intelligent Brain Computer Interface (BCI) Design "[5] Moses et al. "Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria"

Data structure after preprocessing

Model for Consonant Classification

Echo State Network (ESN)

- 1. The kind of RNN model
- 2. Process time-series data
- 3. Reduce computational complexity
- 4. Many fixed parameter settings

Parameter	Meaning	
N _u	Number of input layer nodes	
N_{χ}	Number of reservoir layer nodes	
N _y	Number of output layer nodes	
W ⁱⁿ	Input connectivity weight matrix	
W	Recurrent connectivity weight matrix in the reservoir	
α	Leaky rate	

 *f denotes the activation function. In this study, the tanh function is used 25

ESN model for Consonant Classification

ESN parameter settings

Parameter	Meaning	Set
N _u	Number of input layer nodes	14
N_{χ}	Number of reservoir layer nodes	100
N _y	Number of output layer nodes	5
W	Recurrent connectivity weight matrix in the reservoir	[-1 +1]
d	Density of connections in the reservoir	0.9
ρ	Spectral radius of W	0.9
W^{in}	Input connectivity weight matrix	
α	Leaky rate	

Training model

Linear regression model

Sample usage ratio **90%** (train), **10%** (test)

ESN model for Consonant Classification

Wⁱⁿ Input connectivity weight matrix

$$x(n+1) = f W^{in}u(n+1) + Wx(n)$$

- Uniformly distributed random numbers
- It determines the performance power of the output.
- ➢ Set to [-1 1]

ESN model for Consonant Classification

α	Leaky rate
---	------------

$$y(n+1) = (1-\alpha)x(n) + \alpha f(W^{out}x(n+1))$$
$$\alpha \in (0,1]$$

- Control the speed of the time change of the reservoir state
- When $\alpha < 0.001 \rightarrow$ Prediction scattered
- When $\alpha > 0.1 \rightarrow$ Heavy concentrated

 $\rightarrow \alpha = 0.009$

F ¹	32	9	14	12	3
B 2	30	16	14	7	3
	26	7	16	18	3
M 4	24	8	13	18	7
S ⁵	25	10	15	13	7
	¹ F	2 B	3 Predicted Class	4 M	₅ S

 $\alpha > 0.1$

ESN Parameters and Settings for Consonant Classification

Parameter Meaning		Set
N _u	Number of input layer nodes	14
N _x	Number of reservoir layer nodes	100
N _y	Number of output layer nodes	5
W	Recurrent connectivity weight matrix in the reservoir	[-1 +1]
d	Density of connections in the reservoir	0.9
W ⁱⁿ	Input connectivity weight matrix	[-1 +1]
α	Leaky rate	0.009
ρ	ρ Spectral radius of W	

Training model

Linear regression model

Sample usage ratio **90%** (train), **10%** (test)

Discussion for Consonant Classification

A	Average classification accuracy 28.3%			icy
	Consonant		Precision [%]	
Ì		\mathbf{F}	29.1	
		В	33.8	
		Р	29.5	
		М	24.1	
		S	22.0	

F, B, P: Relatively high accuracy S: Lowest accuracy

 Consonant B features are more likely to appear in brain activity, while consonant S features may be relatively less likely to appear.

Speech Feature Analysis and Discrimination in Biological Information

1D01 HONDA Shogo

Discussion for Consonant Classification

F, B, P: Relatively high accuracy S: Lowest accuracy

Similar tendency in Moses et al. [5]

Use words that start with the <u>five</u> <u>consonants</u> as this study

- High recognition accuracy for words starting with the consonants B and F
- Low recognition accuracy for words starting with the consonant S

Result of consonant classification

Average classification accuracy 28.3%

Consonant		Precision [%]
	F	29.1
	В	33.8
	Р	29.5
	М	24.1
	S	22.0

F, B, P: Relatively high accuracy S: Lowest accuracy

 Consonant B features are more likely to appear in brain activity, while consonant S features may be relatively less likely to appear.

2. Differences in the **movement of the articulators** depending on the sound

Result of consonant classification

Differences in the movement of the articulators depending on the sound

Discussion

Achievement

- 1. Analyzed the pre-speech EEG
- 2. Verified speech discrimination with 28.3%

- Improvement

ESN training algorithm

Linear regression → Gradient-based model

Subjects for EEG measurement

Non-native English speakers \rightarrow Native English speakers

Speech Feature Analysis and Discrimination in Biological Information

1D01 HONDA Shogo

Speech Feature Analysis and Discrimination in Biological Information

1D01 HONDA Shogo

Supporting Materials

Another training model: Least Mean Square (LMS)

[6] Wen et al., "Memristor-Based Echo State Network with Online Least Mean Square," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp. 1787–1796, 9 2019.

Calculates the error between the model output and the target output each time

The steps of the LMS algorithm are presented as follows:

step 1 Define variables and parameters. In order to facilitate the processing, bias is combined with weights:

$$\mathbf{w}(n) = [\mathbf{b}(n), \mathbf{w}_1(n), \mathbf{w}_2(n), ..., \mathbf{w}_N(n)]^T,$$
 (6)

where b(n) is bias, n is iteration number. The corresponding training sample is

$$\mathbf{x}(n) = [1, \mathbf{x}_1(n), \mathbf{x}_2(n), ..., \mathbf{x}_N(n)]^T.$$
(7)

- step 2 The initialization. Assign small random initial values to the weights $\mathbf{w}(n), n = 0$.
- step 3 Input the sample, calculate actual output $\mathbf{y}(n)$ and error $\mathbf{e}(n)$. According to the given expected output $\mathbf{d}(n)$, we can calculate

$$\mathbf{y}(n) = \mathbf{x}^T(n)\mathbf{w}(n). \tag{8}$$

$$\mathbf{e}(n) = \mathbf{d}(n) - \mathbf{y}(n). \tag{9}$$

step 4 Adjust the weights vector. Set the learning rate η and calculate

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta \mathbf{x}^T(n) \mathbf{e}(n).$$
 (10)

Activation Function: Tanh

Electrodes Position and Number of EEG

(d) Best 32 channels.

[7] J. Montoya-Mart ´ınez, J. Vanthornhout, A. Bertrand, and T. Francart, "Effect of number and placement of EEG electrodes on measurement of neural tracking of speech," PLoS ONE, vol. 16, no. 2, 2 2021.

Academic Achievements

(1) The Best Poster Award, Distributed Processing System Society Workshop (DPSWS), November 2020