MOVING TOWARDS REAL-TIME IMAGINED LANGUAGE CLASSIFICATION

Joseph Zonghi

Computer Engineering M.S. RIT *情報工学修士金沢工業大学* Dr. Cory Merkel Dr. Minoru Nakazawa

OUTLINE

Introduction & Goals

Public Data Set Initial Findings

Quantization and FPGA

English/Japanese Dataset Creation

English/Japanese Results

Conclusion & Future Work

WHAT IS EEG?

- Electroencephalography
 - Recordings of the electrical activity at the scalp produced by the brain's normal functions
 - We generate electrical signals from our brains 24/7
- Are these signals useful?
 - Seizure predictions/recordings
 - Sleep studies
 - Language prediction?
- Limitations
 - Signal is very weak at small distances
 - Need special devices for recording
 - Very noisy

SIMILAR WORK

Word classification:

- Generally low success (difficult to get above random guessing) for multi-class
- [1] Torres-Garcia et al.: Support Vector Machine for 5 classes = **20-35% accuracy**
 - Random Forests = 40% accuracy
- [2] Zhao et al.: Deep Belief Network for binary classification of sounds = **90% accuracy**
 - Publicly available dataset: Kara One

Language Classification:

- [3] Balaji et al.: Artificial Neural Network for yes/no classification = **92% accuracy**
- Not much else... what about whole sentences?

GOALS

- Brainwave Language Prediction
 - Differentiate between imagined English and Japanese
 - Assist with anarthria and dysarthria
 - Assist in multilingual learning environments
- Real-time using Neural Network
 - Preprocess the incoming Bluetooth data
 - Calculate output over a given time window using a neural network

OUTLINE

Introduction & Goals

Public Data Set Initial Findings

Quantization and FPGA

English/Japanese Dataset Creation

English/Japanese Results

Conclusion & Future Work

KARA ONE DATASET

- Provided by Zhao et al. [2]
 - Tried to classify presence of sounds in words: nasal word, vowel-only word, etc.
- Included 4 states per word
 - Resting
 Stimuli
 - 3. Preparing Classify?
 - 4. Speaking

PRELIMINARY TESTING

- Echo State Network
 - Unsatisfactory results
 - Difficult to differentiate between classes with high changing frequency (a.)
 - Difficulty finding reasonable threshold outputs (b.)
 - Many various hyperparameters tested (c.)
 - Raw data not inherently easily differentiable (d.)

SWITCH TO WINDOW-BASED

- Following results achieved by Zhao et al. [2]
- Preprocess data by extracting features over a window
 - Mean
 - Median
 - Min
 - Max
 - Standard Deviation
 - Variance
 - Kurtosis
 - Skewness
 - Etc.

1 🏠 Tree		Accuracy:	70.7%
Last change:	Fine Tree	2790/2790	features
2 🏠 SVM		Accuracy:	94.3%
Last change:	Linear SVM	2790/2790	features
3 🏠 SVM		Accuracy:	91.0%
Last change:	Quadratic SVM	2790/2790	features
4 🏠 SVM		Accuracy:	87.4%
Last change:	Cubic SVM	2790/2790	features

15 features \times 62 channels = 930 input features

PRELIMINARY NEURAL NETWORK TESTING

- Can the accuracy be increased further?
- NN Properties:
 - Normalizing input layer
 - Fully-connected internal layer(s)
 - ReLU activation layers
 - Softmax output activation layer
 - Classify between thinking and speaking states

PRELIMINARY NEURAL NETWORK TESTING

PRELIMINARY NN TESTING

From 75 onward, a completely new person is tested upon

- 0 = Thinking
- I = Speaking
- Orange = ground truth
- Blue = network guess

What happens if we test on a brandnew person?

Important Takeaways:

- Stimuli heavily affects a person's EEG response
- Lack of stimuli is easy to train to
- EEG is heavily personalized

MORE TRAINING VS. TARGETED TRAINING

2000 training samples on various people

1500 training samples on less people overall but same people as test data

Key Takeaways:

- EEG is heavily personalized!
- It might be better to have less training data but include the people you want to test on.

OUTLINE

Introduction & Goals

Public Data Set Initial Findings

Quantization and FPGA

English/Japanese Dataset Creation

English/Japanese Results

Conclusion & Future Work

Bits		Fixed Point		
	1	0.5		
	2	0.25		
	3	0.125		
	4	0.0625		
	5	0.03125		
	6	0.015625		
	7	0.0078125		
	8	0.00390625		
	9	0.001953125		
	10	0.000976563		
	11	0.000488281		
	12	0.000244141		
	13	0.00012207		
	14	6.10352E-05		
	15	3.05176E-05		
	16	1.52588E-05		

QUANTIZATION

- Converting previously full precision (32 or 64 bit floating points for MATLAB) numbers to fixed point
- MATLAB usually uses 64 bits (double), but the DeepNetworkDesigner uses 32 bits for the weights
- Tensorflow has Quantization-Aware Training

Quantization Results (Rounding after Training)

Single Layer Network

• Smaller networks are better with less resolution

Predicted Class

1

11

0

11

0

Predicted Class

12

0

Predicted Class

1

Three Layer Network

3 Layer Accuracy with 16.16 bits: 0.996587 3 Layer Accuracy with 32.32 bits: 0.996587

- Bigger networks propagate error more with less resolution
- Perform better at higher resolution

3 Layer Accuracy with 8.8 bits: 0.996587

0

Class

True

0

Quantization-Aware Training

ORIGINAL FPGA DESIGN

BEHAVIORAL NEURAL NETWORK IN VHDL

- Neuron State Machine:
 - Idle
 - Wait for start signal (from parent neural network component)
 - Inputs
 - Get input signal(s) as bus array
 - Set sum equal to bias
 - Multiplication
 - Mult <= weight(i) * input(i)
 - Go to sum if i != 0, else go to activation
 - Sum
 - Add mult result to current sum value
 - Decrement i

- Activation:
 - Send output to activation function component and done signal to 0 (active-low)
 - ReLU
 - If input > 0
 - Ouput <= input
 - Else
 - Output <= 0
 - Softmax
 - If input1 > input2
 - Output <= input1
 - Else
 - Output <= input2

UPDATED FPGA DESIGN

UTILIZATION RESULTS

- Relative linear scaling with the total number of bits present (bits * neurons)
 - 20 neurons * 32 bits is about the same utilization as 40 neurons * 16 bits
- Pick combination based on goals
- Only small networks can fit!
- More weights leads to slower networks
- Less precision leads to less accuracy

OUTLINE

Introduction & Goals

Public Data Set Initial Findings

Quantization and FPGA

English/Japanese Dataset Creation

English/Japanese Results

Conclusion & Future Work

DATASET

- 5 subjects: 4 native Japanese, 1 native English
- Read English or Japanese sentence combinations displayed on screen
- 60 prompt combinations per person (3 sets of 20)
- Example prompt combination:
 - Today is very hot, but it seems like it will rain next week. + The supermarket sells bananas, but they don't have blueberries.
 - ・今日はとても暑いけど、来週は雨が降りそう。+スーパーはバナナを売っているけど、ブルーベリーがない。
- Random, unscripted imagined speech included as well

EMOTIV EPOC X VS. FLEX

Emotiv EPOC X

- 14 Channels
- 14-16 Bit Precision
 - 128 or 256 Hz
- 5th order Sinc Filtering

Emotiv EPOC Flex

- 32 Channels
- 14 Bit Precision
 - 128 Hz
- 5th Order Sinc Filtering

VIEWING THE DATA

Very Noisy!

OUTLINE

Introduction & Goals

Public Data Set Initial Findings

Quantization and FPGA

English/Japanese Dataset Creation

English/Japanese Results

Conclusion & Future Work

ANALYZING THE DATA

FEATURE SELECTION

- More features = less accuracy?
- Mean alone proves to be the most effective
- Raw EEG is also effective

	EPOC X	EPOC Flex
Mean Only	$0.7137\ {\pm}0.039$	$0.9846\ {\pm}0.010$
Above + Max + Min + Max/Min Related	0.6368 ± 0.020	$0.9538\ {\pm}0.018$
Above + Standard Deviation + Variance	$0.5897 \ {\pm} 0.022$	0.9077 ± 0.014
Skewness & Kurtosis	$0.5214\ {\pm}0.027$	$0.3692 \ {\pm} 0.076$
All 14	0.5940 ± 0.019	0.8923 ± 0.034
Raw EEG	$0.5024\ {\pm}0.041$	$0.9940\ {\pm}0.003$

MOVING WINDOW

Ι	4		5	8	2	3	8	4	5	I	4	8	9	7	4
↓ ▼	movmean() of 3														
2.5	3.	.33	5.67	5	4.33	4.33	5	5.67	3.33	3.33	4.33	7	8	6.67	5.5

- For training purposes, two methods were examined on user 5
 - MATLAB's movmean() function
 - Temporally close points are very similar, may lead to overfitting
 - Large amount of training data
 - Stepwise moving average
 - Each group of points are separated by the window size, so the resulting values are means of unique points
 - Less data, but it is more unique

Window Size	Moving Mean	Stepwise
10	$0.9942\ {\pm}0.005$	0.8995 ± 0.026
20	0.9978 ± 0.002	0.8454 ± 0.030
50	$0.9957\ {\pm}0.003$	0.6538 ± 0.059
100	$0.9964\ {\pm}0.002$	0.6410 ± 0.124
200	$0.9982\ {\pm}0.001$	0.4500 ± 0.265

100 Hidden Neuron Network	Test Accuracy	Accuracy for a New Subject
Subjects 1-4	$0.7842\ {\pm}0.010$	0.5111 ± 0.047
Subjects 1-3	0.7984 ± 0.011	0.5130 ± 0.032
Subjects 1-2	$0.8570\ {\pm}0.017$	0.4983 ± 0.045
Subjects 2-3	$0.8443\ {\pm}0.013$	0.5083 ± 0.032
Subject 2	$0.8646\ {\pm}0.013$	0.5101 ± 0.039
Subject 2 (20 hidden neurons)	0.7467 ± 0.006	0.5264 ± 0.028
Subject 2 (1000 hidden neurons)	0.8919 ± 0.005	0.4969 ± 0.030

TRAINING SUBJECTS

- Would different combinations of subjects as training data work well for testing on a brandnew person to the network?
- New people have such a large variance that even with heavy training regularization, the model can not adapt well.

Combination (Neurons)	Test Accuracy on Set	Accuracy for New Subject (% Included)
Subjects 1-5 (1000)	0.8204 ± 0.005	N/A
Subjects 1-5 (5000)	0.8141 ± 0.003	N/A
Subjects 1-4 (1000)	0.7834 ± 0.012	$0.6073 \pm 0.028 (50\%)$
Subjects 1-4 (1000)	0.7905 ± 0.006	$0.4463 \pm 0.032 (25\%)$
Subjects $1-4$ (100)	0.7849 ± 0.014	$0.5331 \pm 0.021 (50\%)$
Subjects $1-4$ (100)	0.8167 ± 0.008	$0.4888 \pm 0.044 \ (25\%)$
Subjects $1-4$ (20)	0.6816 ± 0.011	$0.5331 \pm 0.051 (50\%)$
Subjects $1-4$ (20)	0.6860 ± 0.011	$0.4003 \pm 0.045 (25\%)$
Subjects 1-3	0.8288 ± 0.005	0.4972 ± 0.039
Subject 3	0.8714 ± 0.010	0.5307 ± 0.048

TRANSFER LEARNING ATTEMPTS

- If new people are very difficult to adequately classify, how about including some of their data when retraining?
- Train first, and then train again using some of the target user's data in the train set
- Better, but they still have too much variance in the rest of their data.

"REAL-TIME" RESULTS

- Using Sets 1+2 for train, 3 for test
- Even with regularization and many different combinations of parameters, data taken at a different time period is too unique for the model to be able to adapt to currently.
 - What about trends in the data instead...?

Users	Target	Test Accuracy	"Real-Time" Accuracy	Notes
1-5	1	0.9095 ± 0.029	0.5540 ± 0.034	Raw EEG
1-5	2	0.8817 ± 0.036	0.5502 ± 0.019	Raw EEG
1-5	3	0.8792 ± 0.031	0.5347 ± 0.013	Raw EEG
1-5	4	0.9063 ± 0.030	0.5477 ± 0.022	Raw EEG
1-5	5	0.9418 ± 0.038	0.5049 ± 0.027	Raw EEG
1-5	1	0.9136 ± 0.024	0.4915 ± 0.036	Moving Mean
1-5	2	0.9546 ± 0.024	0.5071 ± 0.038	Moving Mean
1-5	3	0.9008 ± 0.026	0.4998 ± 0.048	Moving Mean
1-5	4	0.9126 ± 0.028	0.5447 ± 0.017	Moving Mean
1-5	5	0.9465 ± 0.021	0.4958 ± 0.066	Moving Mean
1	1	0.9520 ± 0.009	0.5118 ± 0.034	Raw EEG
2	2	0.8279 ± 0.020	0.5241 ± 0.047	Raw EEG
3	3	0.8549 ± 0.008	0.5256 ± 0.033	Raw EEG
4	4	0.8516 ± 0.009	0.5379 ± 0.023	Raw EEG
5	5	0.9316 ± 0.018	0.4615 ± 0.038	Raw EEG
1	1	0.9411 ± 0.019	0.4861 ± 0.027	Moving Mean
2	2	0.9896 ± 0.003	0.6042 ± 0.025	Moving Mean
3	3	0.9893 ± 0.006	0.5421 ± 0.044	Moving Mean
4	4	0.8970 ± 0.011	0.5122 ± 0.033	Moving Mean
5	5	0.9980 ± 0.002	0.4648 ± 0.032	Moving Mean

OUTLINE

Introduction & Goals

Public Data Set Initial Findings

Quantization and FPGA

English/Japanese Dataset Creation

English/Japanese Results

Conclusion & Future Work

IN CONCLUSION

Yes, imagined language is differentiable

Post-hoc accuracies reach over 95%!

Real-time accuracies barely surpass 60%...

EEG is heavily temporally dependent and personalized... maybe try an Echo State Network or LSTM?

Emotiv devices need proprietary software – not easily compatible with an FPGA

Quantization-aware training can be useful at low precision (75% at 2 bits to 90% at 4 bits) , but maybe not at high precision (93% from 5 bits onward)

FUTURE WORK

2

 Echo State Network, Long Short-Term Memory Network, etc. Increase of subjects for the dataset and/or increase of data per subject 3

EEG recording device reconsideration for usage with FPGA

ACKNOWLEDGEMENTS

- Advisors: Dr. Cory Merkel & Dr. Minoru Nakazawa
- Dr. Andres Kwasinki, dual MS program advisor
- Fujimura-san, Fukami-san, and Kugo-san from KIT study abroad
- Tokida-san, Watanabe-san, Adachi-san, and Shimizu-san from Nakazawa Lab
- Taga-san for the support
- My family in Natick

REFERENCES

- [1] A. Torres-Garcia, C. A. Reyes-Garcia, and L. Villasenor-Pineda, "Toward a silent speech interface based on unspoken speech," in BIOSIGNALS 2012 Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, 02 2012.
- [2] Shunan Zhao and Frank Rudzicz (2015) Classifying phonological categories in imagined and articulated speech. *In Proceedings of ICASSP* 2015, Brisbane Australia.
- [3] A. Balaji, A. Haldar, K. Patil, T. S. Ruthvik, V. CA, M. Jartarkar, and V. Baths, "Eeg-based classification of bilingual unspoken speech using ann," in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 1022–1025.
- [4] Soh, Harold & Demiris, Yiannis. (2014). Spatio-Temporal Learning With the Online Finite and Infinite Echo-State Gaussian Processes. IEEE transactions on neural networks and learning systems. 26. 10.1109/TNNLS.2014.2316291.
- [5] G. Krishna, C. Tran, Y. Han, M. Carnahan, and A. H. Tewfik, "Speech synthesis using eeg," in ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 1235–1238.
- [6] <u>https://www.allaboutcircuits.com/technical-articles/fixed-point-representation-the-q-format-and-addition-examples/</u>
- [7] https://emotiv.gitbook.io/epoc-x-user-manual/introduction/technical-specifications
- [8] https://emotiv.gitbook.io/epoc-flex-user-manual/epoc-flex/technical-spec