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WHAT IS EEG?

• Electroencephalography 
• Recordings of the electrical activity at the scalp 

produced by the brain’s normal functions
• We generate electrical signals from our brains 24/7

• Are these signals useful?
• Seizure predictions/recordings
• Sleep studies
• Language prediction?

• Limitations
• Signal is very weak at small distances
• Need special devices for recording
• Very noisy
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SIMILAR 
WORK
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Word classification:
• Generally low success (difficult to get above 

random guessing) for multi-class
• [1] Torres-Garcia et al.: Support Vector Machine 

for 5 classes = 20-35% accuracy
• Random Forests = 40% accuracy

• [2] Zhao et al.: Deep Belief Network for binary 
classification of sounds = 90% accuracy
• Publicly available dataset: Kara One

Language Classification:
• [3] Balaji et al.: Artificial Neural Network for 

yes/no classification = 92% accuracy 
• Not much else… what about whole 

sentences?



GOALS

• Brainwave Language Prediction
• Differentiate between imagined English and Japanese
• Assist with anarthria and dysarthria
• Assist in multilingual learning environments

• Real-time using Neural Network
• Preprocess the incoming Bluetooth data

• Calculate output over a given time window using a neural 
network
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KARA ONE DATASET

• Provided by Zhao et al. [2]
• Tried to classify presence of 

sounds in words: nasal 
word, vowel-only word, etc.

• Included 4 states per word
1. Resting

2. Stimuli

3. Preparing

4. Speaking
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PRELIMINARY 
TESTING

• Echo State Network
• Unsatisfactory results
• Difficult to differentiate 

between classes with 
high changing frequency 
(a.)

• Difficulty finding 
reasonable threshold 
outputs (b.)

• Many various 
hyperparameters tested 
(c.)

• Raw data not inherently 
easily differentiable (d.)

a. b.

c. d.
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SWITCH TO WINDOW-BASED

• Following results achieved by Zhao et al. [2]
• Preprocess data by extracting features over a window

• Mean
• Median
• Min
• Max
• Standard Deviation
• Variance
• Kurtosis
• Skewness
• Etc.

15 features x 62 channels = 930 input features
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PRELIMINARY NEURAL NET WORK TESTING

• Can the accuracy be increased further?

• NN Properties:
• Normalizing input layer
• Fully-connected internal layer(s)
• ReLU activation layers
• Softmax output activation layer
• Classify between thinking and speaking 

states

930              500            250          2        
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PRELIMINARY NEURAL NET WORK TESTING

1 1
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Speaking
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PRELIMINARY NN TESTING

From 75 onward, a completely new person is tested upon

Here they are now trained upon with transfer learning

Important Takeaways:
• Stimuli heavily affects a person’s 

EEG response
• Lack of stimuli is easy to train to
• EEG is heavily personalized
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• 0 = Thinking
• 1 = Speaking
• Orange = ground truth
• Blue = network guess
What happens if we test on a brand-
new person?



MORE TRAINING VS. TARGETED TRAINING

2000 training samples on various people 1500 training samples on less people overall but same people as test data
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Key Takeaways:
• EEG is heavily personalized!
• It might be better to have less training data but include the people you want to test on.
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QUANTIZATION

• Converting previously full 
precision (32 or 64 bit 
floating points for 
MATLAB) numbers to 
fixed point

• MATLAB usually uses 64 
bits (double), but the 
DeepNetworkDesigner
uses 32 bits for the weights

• Tensorflow has 
Quantization-Aware 
Training

Bits Fixed Point
1 0.5
2 0.25
3 0.125
4 0.0625
5 0.03125
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125

10 0.000976563
11 0.000488281
12 0.000244141
13 0.00012207
14 6.10352E-05
15 3.05176E-05
16 1.52588E-05
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Quantization Results (Rounding after Training)

Single Layer Network Three Layer Network
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• Smaller networks are better with less resolution • Bigger networks propagate error more with less resolution
• Perform better at higher resolution



Quantization-Aware Training

• Three methodologies:
• Base model training

• Normal Tensorflow Training

• 1-bit training
• Train with awareness of 1-bit inputs

• i-bit training
• Train with awareness equal to the bit 

size of the final quantized weights

• Train with the respective methodologies, 
round afterwards

• Low precision networks use many 
weights, and high precision have few 
weights

• For low precision, use quantization aware 
training, but normal training is 
recommended for high precision
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ORIGINAL FPGA DESIGN
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BEHAVIORAL NEURAL NET WORK IN VHDL

• Neuron State Machine:
• Idle

• Wait for start signal (from parent neural network 
component)

• Inputs
• Get input signal(s) as bus array
• Set sum equal to bias

• Multiplication
• Mult <= weight(i) * input(i)
• Go to sum if i != 0, else go to activation

• Sum
• Add mult result to current sum value
• Decrement i

• Activation:
• Send output to activation function component 

and done signal to 0 (active-low)
• ReLU

• If input > 0
• Ouput <= input

• Else
• Output <= 0

• Softmax
• If input1 > input2

• Output <= input1
• Else

• Output <= input2
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UPDATED FPGA DESIGN

Reasons for switch:
• Emotiv needs 

proprietary software; no 
way to not start with 
software

• Only use a single feature
• Offloads utilization
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UTILIZATION RESULTS
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• Relative linear scaling with the total number of bits present (bits * neurons)
• 20 neurons * 32 bits is about the same utilization as 40 neurons * 16 bits

• Pick combination based on goals
• Only small networks can fit!
• More weights leads to slower networks
• Less precision leads to less accuracy
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DATASET

• 5 subjects: 4 native Japanese, 1 native English

• Read English or Japanese sentence combinations displayed on screen

• 60 prompt combinations per person (3 sets of 20)

• Example prompt combination:
• Today is very hot, but it seems like it will rain next week. + The supermarket sells 

bananas, but they don’t have blueberries.
• 今日はとても暑いけど、来週は雨が降りそう。+ スーパーはバナナを売って
いるけど、ブルーベリーがない。

• Random, unscripted imagined speech included as well
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EMOTIV EPOC 
X VS. FLEX

Emotiv EPOC X

• 14 Channels

• 14-16 Bit Precision

• 128 or 256 Hz

• 5th order Sinc Filtering

Emotiv EPOC Flex

• 32 Channels

• 14 Bit Precision

• 128 Hz

• 5th Order Sinc Filtering
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VIEWING 
THE DATA

Random Speech Prompt-Based Speech

2 5Very Noisy!

Japanese
English
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ANALYZING 
THE DATA
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Feature 
Usage

Moving 
Window 

Size

Training 
Subjects

Real-
Time 
Usage



FEATURE SELECTION

• More features = less accuracy?

• Mean alone proves to be the most effective

• Raw EEG is also effective
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MOVING WINDOW

• For training purposes, two methods were examined on user 5
• MATLAB’s movmean() function

• Temporally close points are very similar, may lead to overfitting

• Large amount of training data

• Stepwise moving average
• Each group of points are separated by the window size, so the resulting values 

are means of unique points

• Less data, but it is more unique
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1 4 5 8 2 3 8 4 5 1 4 8 9 7 4

2.5 3.33 5.67 5 4.33 4.33 5 5.67 3.33 3.33 4.33 7 8 6.67 5.5

1 4 5 8 2 3 8 4 5 1 4 8 9 7 4

movmean() of 3

3.33 4.33 5.67 4.33 6.67

Stepwise of 3



TRAINING 
SUBJECTS • Would different combinations of subjects as 

training data work well for testing on a brand-
new person to the network?

• New people have such a large variance that 
even with heavy training regularization, the 
model can not adapt well.
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TRANSFER 
LEARNING 
ATTEMPTS

• If new people are very difficult to adequately 
classify, how about including some of their 
data when retraining?

• Train first, and then train again using some of 
the target user’s data in the train set

• Better, but they still have too much variance in 
the rest of their data.
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“REAL -TIME” 
RESULTS

• Using Sets 1+2 for train, 3 for test

• Even with regularization and many 
different combinations of 
parameters, data taken at a 

different time period is too unique 
for the model to be able to adapt 

to currently.

• What about trends in the data 
instead…?
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IN  
CONCLUSION

Yes, imagined language is 
differentiable

Post-hoc accuracies reach over 
95%!

Real-time accuracies barely 
surpass 60%...

EEG is heavily temporally dependent and personalized… 
maybe try an Echo State Network or LSTM?

Emotiv devices need proprietary software – not 
easily compatible with an FPGA

Quantization-aware training can be useful at low 
precision (75% at 2 bits to 90% at 4 bits) , but maybe 
not at high precision (93% from 5 bits onward)
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FUTURE WORK

3 5

Temporal network 
approach
• Echo State Network, Long 

Short-Term Memory 
Network, etc.

1
Increase of subjects 
for the dataset 
and/or increase of 
data per subject

2
EEG recording device 
reconsideration for 
usage with FPGA
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