Optimization for a Moving Camera Position at an Intersection

Computer Engineering MS, KIT, Nakazawa lab Katsuaki Nakano

1. Introduction

Current status of traffic surveys automation

- 97% of them in highways are automated
- 3% of them in general roads are done manually
- Counting precisions are low in intersections

Causes of inaccuracy in automation using camera

- Occlusions with cars
- Measurement at night
- Effects of sunlight, headlights, etc.

■日照等の影響

太陽光のフレアによる影響

Ref:[2] ヘッドライトのフレアによる影響

2. Purpose

To realize an automatic traffic counting system that is robust to the effects of sunlight over time, such as backlighting and shadows.

3. Method

Images acquired from a movable camera installed at an intersection are automatically measured by object recognition and tracking.

Reinforcement learning is applied to optimize the motion of the moving camera.

4. Experiment

Compare precision in these two situations

- The camera location is decided by the method
- The camera location is decided by human

Elements of Reinforcement learning

- Agent: A moving camera
- Action: Left/right movement, up/down tilt
- Reward ①: Backlight intensity (histogram)
- Reward⁽²⁾: Level of confidence of detector

References

 MLIT, Issues of data collection for traffic census,<u>https://www.mlit.go.jp/road/ir/ir-council/ict/pdf01/03.pdf</u>
MLIT, Analysis of camera images for constant observation, <u>https://www.mlit.go.jp/road/ir/ir-council/ict/pdf04/04.pdf</u>